Antibiotic overproduction in Streptomyces coelicolor A3 2 mediated by phosphofructokinase deletion.
نویسندگان
چکیده
Streptomycetes are exploited for production of a wide range of secondary metabolites, and there is much interest in enhancing the level of production of these metabolites. Secondary metabolites are synthesized in dedicated biosynthetic routes, but precursors and co-factors are derived from the primary metabolism. High level production of antibiotics in streptomycetes therefore requires engineering of the primary metabolism. Here we demonstrate this by targeting a key enzyme in glycolysis, phosphofructokinase, leading to improved antibiotic production in Streptomyces coelicolor A3(2). Deletion of pfkA2 (SCO5426), one of three annotated pfkA homologues in S. coelicolor A3(2), resulted in a higher production of the pigmented antibiotics actinorhodin and undecylprodigiosin. The pfkA2 deletion strain had an increased carbon flux through the pentose phosphate pathway, as measured by (13)C metabolic flux analysis, establishing the ATP-dependent PfkA2 as a key player in determining the carbon flux distribution. The increased pentose phosphate pathway flux appeared largely because of accumulation of glucose 6-phosphate and fructose 6-phosphate, as experimentally observed in the mutant strain. Through genome-scale metabolic model simulations, we predicted that decreased phosphofructokinase activity leads to an increase in pentose phosphate pathway flux and in flux to pigmented antibiotics and pyruvate. Integrated analysis of gene expression data using a genome-scale metabolic model further revealed transcriptional changes in genes encoding redox co-factor-dependent enzymes as well as those encoding pentose phosphate pathway enzymes and enzymes involved in storage carbohydrate biosynthesis.
منابع مشابه
Mutations in rsmG, encoding a 16S rRNA methyltransferase, result in low-level streptomycin resistance and antibiotic overproduction in Streptomyces coelicolor A3(2).
Certain str mutations that confer high- or low-level streptomycin resistance result in the overproduction of antibiotics by Streptomyces spp. The str mutations that confer the high-level resistance occur within rpsL, which encodes the ribosomal protein S12, while those that cause low-level resistance are not as well known. We have used comparative genome sequencing to determine that low-level r...
متن کاملAn aberrant protein synthesis activity is linked with antibiotic overproduction in rpsL mutants of Streptomyces coelicolor A3(2).
Certain mutations in the rpsL gene (encoding the ribosomal protein S12) activate or enhance antibiotic production in various bacteria. K88E and P91S rpsL mutants of Streptomyces coelicolor A3(2), with an enhanced actinorhodin production, were found to exhibit an aberrant protein synthesis activity. While a high level of this activity (as determined by the incorporation of labelled leucine) was ...
متن کاملTranscriptome analysis of an antibiotic downregulator mutant and synergistic Actinorhodin stimulation via disruption of a precursor flux regulator in Streptomyces coelicolor.
Through microarray analysis of an antibiotic-downregulator-deleted Streptomyces coelicolor ΔwblA ΔSCO1712 mutant, 28 wblA- and SCO1712-dependent genes were identified and characterized. Among 14 wblA- and SCO1712-independent genes, a carbon flux regulating 6-phosphofructokinase SCO5426 was additionally disrupted in the ΔwblA ΔSCO1712 mutant and further stimulated actinorhodin production in S. c...
متن کاملIdentification of a gene negatively affecting antibiotic production and morphological differentiation in Streptomyces coelicolor A3(2).
SC7A1 is a cosmid with an insert of chromosomal DNA from Streptomyces coelicolor A3(2). Its insertion into the chromosome of S. coelicolor strains caused a duplication of a segment of ca. 40 kb and delayed actinorhodin antibiotic production and sporulation, implying that SC7A1 carried a gene negatively affecting these processes. The subcloning of SC7A1 insert DNA resulted in the identification ...
متن کاملIdentification of ATP-dependent phosphofructokinase as a regulatory step in the glycolytic pathway of the actinomycete Streptomyces coelicolor A3(2).
The ATP-dependent phosphofructokinase (ATP-PFK) of Streptomyces coelicolor A3(2) was purified to homogeneity (1,600-fold) and characterized (110 kDa, with a single type of subunit of 40 kDa); it is allosterically inhibited by phosphoenolpyruvate. Cloning of the pfk gene of S. coelicolor A3(2) and analysis of the deduced amino acid sequence (343 amino acids; 36,667 Da) revealed high similarities...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 283 37 شماره
صفحات -
تاریخ انتشار 2008